
Graph Based Augmentation for Dependency Management in NPM
Shaquille Pearson
s23pears@uwaterloo.ca
University of Waterloo

Waterloo, Ontario, Canada

ABSTRACT
The rapid growth of software ecosystems and the increasing re-
liance on third-party dependencies have underscored the need for
robust dependency management practices. Effective dependency
management is critical to ensuring software stability, security, and
maintainability. However, managing complex dependency relation-
ships, resolving version conflicts, and addressing transitive depen-
dencies remain significant challenges, particularly in ecosystems
like Node Package Manager (NPM). Existing tools often fail to pro-
vide adequate visibility into dependency structures or detect issues
such as unused dependencies and cyclic relationships. This study
explores the potential of graph-based approaches to enhance depen-
dency management by enabling deeper insights into dependency
networks and identifying limitations in existing methodologies.

KEYWORDS
Dependencies, NPM, Graphs, Visualization, Conflicts, Versions,
Transitivity, Ecosystems, Packages, Software

ACM Reference Format:
Shaquille Pearson. 2024. Graph Based Augmentation for Dependency Man-
agement in NPM. In . ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Dependencies are the backbone of modern software development,
enabling developers to integrate pre-built functionalities into their
applications. Tools like NPM and Yarn simplify dependency man-
agement, allowing developers to specify requirements through files
like package.json and retrieve packages from extensive reposito-
ries. NPM, the largest ecosystem with over four million packages,
supports the rapid evolution of JavaScript projects by fostering code
reuse and modular development [9, 11]. However, managing depen-
dencies remains a complex task, as projects must navigate a growing
web of interconnected components. Issues such as transitive de-
pendency conflicts, version duplication, and unused dependencies
persist as recurring challenges that hinder project stability and
increase maintenance overhead [5, 12].

These challenges are exacerbated by the dynamic nature of de-
pendency networks. Frequent updates and inconsistent adherence

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

to versioning conventions like Semantic Versioning (SemVer) of-
ten introduce technical lag and complicate dependency resolution
processes [1, 3]. Studies in related ecosystems, such as Java and
Python, have shown that dependency management failures can sig-
nificantly affect software quality. For instance, Decan et al. [5] and
Zerouali et al. [12] identified the risks posed by vulnerabilities and
outdated dependencies, while Cogo et al. [3] highlighted the impact
of reactive downgrades. Despite these findings, the NPM ecosys-
tem remains underexplored, leaving critical questions unanswered
about its dependency landscape.

This study addresses the gaps in existing literature by analyz-
ing dependency-related issues in NPM projects and evaluating the
feasibility of graph-based approaches to enhance dependency man-
agement. Specifically, it seeks to answer the following research
questions:

• RQ1: How prevalent are dependency-related issues in
NPM projects?
Results: The analysis revealed key limitations in current tools,
such as their inability to detect transitive dependency, cyclic
relationships effectively and the inability to visualize depen-
dencies effectively.

• RQ2: Is there a need for graph-based dependency man-
agement tools in NPM projects?
Results: Dependency analysis revealed that issues like ver-
sion duplication and transitive dependencies were common,
impacting 30% of projects. However, cyclic dependencies
were rare, with less than 2% occurrence across datasets.

2 STUDY DESIGN
This study aims to evaluate the feasibility and effectiveness of graph-
based methods in enhancing dependency management within the
NPM ecosystem. By analyzing patterns and relationships among
dependencies, we seek to identify prevalent gaps in current ap-
proaches and provide strategies to mitigate dependency-related
challenges. NPM, as the largest and fastest-growing software pack-
age ecosystem [9], serves as the focal point of the research. It hosts
over four million packages and offers a robust registry where pack-
ages are published and maintained [5].

This section outlines the project selection and data filtration
processes (Section 2.1). We then provide an overview of the graph
construction and querying methodology (Section 2.2 and 2.3).

2.1 Project Selection
This study focuses on dependency management challenges in NPM
packages, selecting JavaScript projects that use NPM as a primary
dependency manager. These projects explicitly define dependencies
in the package-lock.json file, which specifies the required pack-
ages and their version constraints. Figure 1 outlines the projects
collection process.

https://orcid.org/0009-0004-5527-8883
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’17, July 2017, Washington, DC, USA Pearson et al.

Libraries.io

1,277,582
Projects

DF2

DF1

>= 700 Commits

Confidence

56187

3434 94
Projects

Github Metadata

Final Dataset

>= 1000 Downloads
Sample Calculation

95% 

Figure 1: Overview of Project Selection

To curate a representative dataset, the process begins with Li-
braries.io 1, an open-source platform that aggregates a compre-
hensive repository of software projects across multiple package
managers. Filtering for projects using NPM yields an initial dataset
of 1.2 million projects. Recognizing that many of these projects lack
maturity or the necessary complexity for meaningful analysis, a fil-
tration step is implemented to refine the dataset. This step ensures
the selection of projects that are both active and representative of
the broader ecosystem. The filtration criteria are detailed in the
following section.

• Select significant projects (DF1). Download count is an
important metric reflecting a repository’s relevance within
the developer community, as it indicates how frequently a
package is utilized by developers [7].

• Filter mature projects (DF2).A substantial commit history
often signifies that a project is mature, stable, and depend-
able [7]. These projects typically have an active community
of contributors and users, making them reliable options in
the development ecosystem.

• Sample projects. To ensure the dataset is representative
while maintaining feasibility, a sample size of 94 projects
was determined based on statistical methods. The calcula-
tion, illustrated in Figure 2, utilizes a 95% confidence level,
a margin of error of 10%, and a population size of 3,434
projects. This approach ensures a statistically valid repre-
sentation [4]. The resulting dataset comprises 94 projects:
72 using package-lock version 2, 20 using version 1, and 2
with empty configurations.

2.2 Graph Construction
Constructing the dependency graph involved representing pack-
ages as nodes and their relationships, such as dependencies, peer
dependencies, and optional dependencies, as directed edges. This
structure enables the analysis of intricate relationships among pack-
ages in the NPM ecosystem.

1https://libraries.io/NPM

Parameters:

Confidence Level (Z): 1.96 (95%)

Confidence Level Squared (𝑍 2): 3.8416

Proportion (𝑝): 0.5

Margin of Error (𝑒): 0.1

Population Size (𝑁 ): 3434

Calculation:

Numerator: 𝑁 · 𝑍 2 · 𝑝 · (1 − 𝑝)

3434 · 3.8416 · 0.25 = 3303.93

Denominator: (𝑁 − 1) · 𝑒2 + 𝑍 2 · 𝑝 · (1 − 𝑝)

(3434 − 1) · 0.01 + 3.8416 · 0.25 = 35.3

Sample Size (𝑛): 𝑛 =
Numerator
Denominator

𝑛 =
3303.93
35.3

≈ 93.6

Rounded Sample Size: 𝑛 = 94

Figure 2: Sample size calculation (95% confidence level).

• Nodes and Properties: Nodes represent each package as a
node with the following properties
– name: Name of the package.
– version: Version of the package.
– path: File path of the package.

• Relationships and Types: Directed edges represent depen-
dency relationships between packages:
– DEPENDENCIES: Essential runtime requirements.



Graph Based Augmentation for Dependency Management in NPM Conference’17, July 2017, Washington, DC, USA

– PEERDEPENDENCIES: Dependencies expected to be
provided by the consumer.

– OPTIONALDEPENDENCIES: Non-critical dependen-
cies.

• Justifications:
– Directed edges: reflect the dependency flow between
packages, aiding in detecting transitive and cyclic depen-
dencies [2, 5].

– Dependency types: provides granularity for more nu-
anced analyses [6].

2.3 Query Justification
These queries leverage graph database capabilities to explore the
intricate relationships and properties inherent in dependency net-
works. By addressing critical challenges such as detecting unused
dependencies, identifying cyclic relationships, evaluating transitive
dependencies, and calculating graph density, the queries aim to pro-
vide a comprehensive understanding of the dependency ecosystem.
Each query was carefully crafted to align with the research objec-
tives, ensuring that the extracted data highlights areas of potential
improvement and supports the feasibility of graph-based solutions.
The following queries not only target specific dependency manage-
ment challenges but also provide metrics that underpin the findings
of this study.

Transitive dependencies, packages that are not directly re-
quired by a given project but are introduced indirectly through
the dependency graph, often complicate dependency resolution [2].
This query identifies all packages d that lie two or more hops away
from a given package p, ensuring distinct nodes are counted to avoid
overestimations. Such insights highlight the depth and complexity
of dependency networks.

Cyclic dependencies occur when a package directly or tran-
sitively depends on itself, creating potential infinite loops during
resolution and increasing complexity [5]. The query detects these
cycles by finding paths where a package p leads back to itself, of-
fering critical insights into problematic cycles.

Graph Density, which measures the proportion of actual con-
nections to possible connections, captures the interconnectedness
of the dependency network [6]. A dense graph may indicate tightly
coupled ecosystems, while a sparse graph could suggest loosely
connected packages.

Most Depended On Package Query, packages with the high-
est number of dependents, are critical for ecosystem stability [1].
Identifying these packages can guide priority maintenance and
security auditing efforts.

Version Duplication, where different projects depend on vary-
ing versions of the same package, complicate dependency resolu-
tion [11]. By identifying such inconsistencies, this query sheds light
on areas where alignment in versioning could improve maintain-
ability and compatibility across projects.

3 STUDY RESULTS
(RQ1) Identify Gap in NPM Dependency Management Tools

A key focus of this study was to evaluate the limitations of
current tools used for dependency management and to highlight
how graph-based methodologies can address these shortcomings.

Table 1 provides a detailed summary of the identified gaps and
potential graph-based solutions, with references where applicable.

A key focus of this study was to evaluate the limitations of
current tools used for dependency management and to highlight
potential improvements.

Key Findings:

• Cyclic Dependencies: Existing tools rely on manual checks
for circular dependencies [2].

• Unused Dependencies: Unused packages are not fully
flagged, causing inefficiencies [5].

• Transitive Dependencies: Tools lack clarity on nested de-
pendencies [6].

• Impact Analysis: Updates lack comprehensive insight into
cascading effects [1].

• Version Resolutions: Tools do not provide clear conflict
visibility [5].

• Visualization: Visualization is limited, offering minimal
analytical value [1].

(RQ2) Are graph-based tools needed for NPM dependen-
cies?

Graph Density Comparison Graph density measures the ex-
tent of interconnections within a dependency graph, providing
insight into the complexity and cohesiveness of the dependency net-
work. Figure 3 illustrates the comparison of graph density across
projects for both Version 1 and Version 2 of the datasets.

The results indicate a noticeable difference between the two ver-
sions in terms of graph density. In Version 1, the graph densities
exhibit lower values overall, with peaks ranging from 1,000 to 3,000,
reflecting a more loosely coupled network. In contrast, Version 2
shows significantly higher densities for many projects, with several
values exceeding 4,000, suggesting a tighter dependency network.
This disparity may be attributed to additional relationships or up-
dated dependency structures in Version 2.

Interestingly, certain projects in Version 2 display dramatic in-
creases in graph density compared to their counterparts in Version
1. This highlights the evolution of dependencies over time, where
newer or updated projects may integrate more interconnected com-
ponents. Such growth in graph density could indicate increased
complexity, posing challenges for dependency resolution and man-
agement.

Dependency Relationships The radar chart in Figure 5 illus-
trates the differences between Version 1 (v1) and Version 2 (v2) of
the analyzed dependency data across five key metrics: Peer Depen-
dencies, Cyclic Dependencies, Optional Dependencies, Un-
used Dependencies, and Transitive Dependencies. The values
are plotted as proportions relative to the total number of packages
in each version, with averages displayed for additional context.

Comparison of Key Metrics:

• Peer Dependencies: In v1, the total number of peer depen-
dencies recorded was 64, while v2 shows no recorded peer
dependencies. This discrepancy suggests a fundamental dif-
ference in how peer dependencies were captured or present
between the two versions.

• Cyclic Dependencies: Both versions demonstrate a neg-
ligible number of cyclic dependencies, with v1 showing 6



Conference’17, July 2017, Washington, DC, USA Pearson et al.

Table 1: Identified Gaps in Existing Dependency Management Tools

Gap Category Description Tools & Commands Gap Identified

Cyclic Dependencies Difficulty detecting circular dependen-
cies2

npm, Yarn, npm-graph; No direct com-
mand

Manual detection required

Unused Dependencies Ineffective identification of unused
packages3

npm, npm-graph, Dependabot;
npm prune removes unused from
node_modules only

Untracked in package.json

Transitive Dependen-
cies

Poor visibility into nested dependen-
cies4

npm, Yarn, Dependabot; No native com-
mand

Hidden at multiple nested levels

Impact Analysis Hard to see how updates affect down-
stream projects5

npm, Dependabot; npm outdated lists
only outdated packages

No insight into cascading effects

Version Resolutions Limited enforcement of version ranges6 npm, Yarn; yarn resolutions pin ver-
sions

No direct conflict visibility

Visualization Lack of intuitive dependency visualiza-
tion7

npm, npm-graph, Yarn; npm-graph
shows trees

Limited analytical insights

Figure 3: Graph Density Across Projects

and v2 showing 0. This low occurrence suggests that cyclic
dependencies are uncommon across the analyzed projects.

• Optional Dependencies: The v1 dataset recorded 19 op-
tional dependencies, compared to none in v2. This highlights
a potential limitation in v2’s dependency recording or a gen-
uine difference in the package ecosystem between the two
versions.

• Unused Dependencies: The most striking difference lies in
unused dependencies. In v1, 346 unused dependencies were
recorded, compared to 252 in v2. This represents a notable
reduction of 27%, indicating a cleaner dependency graph in
v2 or an improvement in dependency management practices.

• Transitive Dependencies: The v1 data recorded 148 transi-
tive dependencies, whereas v2 recorded 158, marking a slight
increase. This could reflect deeper or broader dependency
graphs in the v2 projects.

Version Duplication vs. Most Depended-On Packages The
graphs illustrate the relationship between version duplication and
the most depended-on packages across projects, with results seg-
mented by Version 4 and Version 6 of package-lock.json. This
analysis is essential for understanding how version inconsisten-
cies propagate within the dependency network and their potential
implications for widely used packages.



Graph Based Augmentation for Dependency Management in NPM Conference’17, July 2017, Washington, DC, USA

Figure 4: Package-lock Version 1

Figure 5: Types of Dependencies in Package-lock Versions

Comparative Insights.

• Version Duplication: Version 1 results exhibit more signif-
icant peaks, suggesting projects in this dataset face greater
challenges with dependency conflicts. In contrast, Version

2 data shows fewer and less severe duplication, indicating
possible improvements in dependency resolution practices.

• Most Depended-On Packages: The centrality of certain
packages remains evident in both versions, emphasizing their
critical role in the ecosystem. However, Version 2 exhibits a
slightly more balanced dependence distribution, potentially
reflecting improved modularity or reduced reliance on single
packages.

• Alignment: In both graphs, high-dependence packages cor-
relate with notable version duplication, reaffirming the need
for careful dependency management in projects with wide-
spread use.

4 PRACTICAL IMPLICATIONS
This section presents key practical insights derived from the study,
offering actionable recommendations for developers and researchers.

Developers:

• Observation 1: Graph-BasedDependency Visualization.
The use of graph-based methodologies provides developers
with a clearer and more actionable understanding of complex
dependency networks. Developers should adopt tools that
offer graph-based visualizations to identify unused, transi-
tive, and cyclic dependencies, enabling more efficient project
maintenance and dependency pruning.

• Observation 2: Addressing Version Duplication. Version
duplication across projects continue to present significant
challenges. Developers should incorporate automated ver-
sion conflict resolution systems, leveraging tools that detect



Conference’17, July 2017, Washington, DC, USA Pearson et al.

Figure 6: Package-lock Version 2

and recommend compatible dependency versions. Proac-
tively managing dependency updates can reduce the risk of
breaking changes and improve project stability.

• Observation 3: Peer Dependency Management. Peer
dependencies, often neglected or misconfigured, lead to crit-
ical compatibility issues. Developers should maintain well-
documented peer dependency requirements and test the in-
tegration of these dependencies rigorously during build and
CI/CD processes. Tools that flag potential peer dependency
issues early in the development lifecycle are recommended.

Researchers:
• Observation 4: Advancing Graph Algorithms for De-
pendency Analysis. The study highlights the utility of
graph-based techniques in analyzing complex dependency
structures. Researchers should explore novel graph algo-
rithms tailored to specific dependency-related issues, such
as detecting critical nodes, optimizing graph density, or iden-
tifying redundant dependencies.

• Observation 5: Understanding Ecosystem Trends. The
analysis of dependency ecosystems across multiple versions
reveals patterns in dependency evolution and management
practices. Researchers should leverage these patterns to study
the scalability of dependency management strategies, focus-
ing on identifying best practices for handling rapidly grow-
ing ecosystems like npm.

• Observation 6: Building Automated Tools. The findings
from this study can inform the development of automated
tools that proactivelymonitor and resolve dependency-related
failures. Researchers should focus on integrating early de-
tection systems and predictive analysis models that help

developers anticipate and address dependency conflicts be-
fore they manifest as build failures.

5 FUTUREWORK
A functional-level dependency graph offers the potential to address
several critical challenges. By capturing the internal dynamics of
packages, this approach could provide a more detailed view of
unused or redundant functions, facilitating the identification of
inefficiencies and opportunities for optimization [2, 5]. Further-
more, functional-level analysis could enhance conflict resolution
by identifying specific functions or APIs responsible for incompati-
bilities, enabling developers to implement targeted fixes [1, 11]. Ad-
ditionally, modeling dynamic interactions between functions could
inform real-time adjustments to dependencies, fostering greater
modularity and flexibility in software projects [3, 10].

Constructing such graphs would require advanced techniques,
such as Abstract Syntax Tree (AST) analysis or bytecode inspec-
tion, to accurately extract and model inter-function relationships.
Additionally, the increased granularity and scale of functional de-
pendency graphs pose challenges in visualization and analysis,
demanding innovative solutions to effectively represent and pro-
cess complex data [8]. Incorporating machine learning techniques
and graph query languages like Cypher could further enhance the
capabilities of functional dependency tracking tools.

6 CONCLUSION
The dynamic and interconnected nature of the NPM ecosystem
presents a unique set of challenges in dependency management,
including version mismatches, cyclic dependencies, and redundant
or unused dependencies. This study analyzed these issues through



Graph Based Augmentation for Dependency Management in NPM Conference’17, July 2017, Washington, DC, USA

the lens of graph-based methods, offering a structured approach to
model, query, and interpret complex dependency relationships. By
constructing dependency graphs and leveraging targeted queries,
this work provided a comprehensive understanding of the ecosys-
tem’s structural and behavioral characteristics.

The analysis of dependency relationships revealed critical gaps
in existing tools, such as limited visibility into nested dependencies
and insufficient detection of unused or cyclic dependencies. These
gaps underscore the need for more advanced tools that leverage
graph-based methods to provide granular insights and actionable
solutions. The comparison of package-lock versions further high-
lighted significant differences in dependency structures, illustrating
the evolution of dependency management practices over time and
the potential for graph-based tools to adapt to these changes.

While this study focused on package-level relationships, future
work can extend this approach to the functional level, enabling
deeper insights into dependency behaviors and facilitating more
precise conflict resolution. The integration of graph databases and
advanced querying techniques, such as Cypher, demonstrates the
feasibility and value of applying graph-based approaches to depen-
dency management.

REFERENCES
[1] M. Alfadel, D. E. Costa, E. Shihab, and B. Adams. 2023. On the discoverability of

npm vulnerabilities in Node.js projects. ACMTransactions on Software Engineering
and Methodology 32, 4 (2023).

[2] C. Bogart, C. Kastner, J. Herbsleb, and F. Thung. 2016. How to break an API:
Cost negotiation and community values in three software ecosystems. In Pro-
ceedings of the ACM SIGSOFT International Symposium on Foundations of Software
Engineering. 109–120.

[3] Filipe Roseiro Cogo, Gustavo A. Oliva, and Ahmed E. Hassan. 2021. An Empirical
Study of Dependency Downgrades in the npm Ecosystem. IEEE Transactions on
Software Engineering 47, 11 (2021), 2457–2470. https://doi.org/10.1109/TSE.2019.
2952130

[4] Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational
and psychological measurement 20, 1 (1960), 37–46.

[5] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact of
security vulnerabilities in the npm package dependency network. In Proceedings
of the 15th international conference on mining software repositories. 181–191.

[6] Alexandre Decan, Tom Mens, and Philippe Grosjean. 2019. An empirical compar-
ison of dependency network evolution in seven software packaging ecosystems.
Empirical Software Engineering 24 (2019), 381–416.

[7] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian.
2014. The promises and perils of mining github. In Proceedings of the 11th working
conference on mining software repositories. ACM, 92–101.

[8] César Soto-Valero, Thomas Durieux, and Benoit Baudry. 2021. A longitudinal
analysis of bloated java dependencies. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1021–1031.

[9] ErikWittern, Philippe Suter, and Shriram Rajagopalan. 2016. A look at the dynam-
ics of the JavaScript package ecosystem. In Proceedings of the 13th International
Conference on Mining Software Repositories. 351–361.

[10] E. Wittern, P. Suter, and S. Rajagopalan. 2016. A look at the dynamics of the
JavaScript package ecosystem. In Proceedings of the International Conference on
Mining Software Repositories. 351–361.

[11] A. Zaimi, A. Ampatzoglou, N. Triantafyllidou, A. Chatzigeorgiou, et al. 2015. An
empirical study on the reuse of third-party libraries in open-source software
development. In Proceedings of the Balkan Conference on Informatics Conference.
1–8.

[12] Ahmed Zerouali, Eleni Constantinou, Tom Mens, Gregorio Robles, and Jesús
González-Barahona. 2018. An empirical analysis of technical lag in npm package
dependencies. In International Conference on Software Reuse. Springer, 95–110.

https://doi.org/10.1109/TSE.2019.2952130
https://doi.org/10.1109/TSE.2019.2952130

	Abstract
	1 Introduction
	2 Study Design
	2.1 Project Selection
	2.2 Graph Construction
	2.3 Query Justification

	3 Study Results
	4 Practical Implications
	5 Future Work
	6 Conclusion
	References

